Como se não bastasse ter sido o descobridor de leis da física, inventor de engenhocas para facilitar a vida humana e um dos maiores matemáticos de todos os tempos, Arquimedes (287-212 a.C.) (http://professorjairojr.blogspot.com/2009/02/grandes-matematicos-arquimedes-de.html) agora é apontado também como o possível inventor de um dos passatempos mais antigos do mundo.
De todos os seus feitos, o que levou mais fama foi a descoberta do empuxo. Conta-se que, enquanto tomava banho de banheira, o grego se deu conta de que o volume de seu corpo imerso deslocava para cima um volume de água de igual valor. Além disso, seu corpo imerso sofria a ação de uma força vertical, para cima - o empuxo -, de valor exatamente igual ao peso da água que era deslocada pelo seu corpo. Entusiasmado com a descoberta o gênio teria saído nu às ruas gritando "Eureca!" (descobri, em grego).
Arquimedes também deixou para a humanidade os benefícios do parafuso, das roldanas, das alavancas e invenções de ataque e defesa militares, como a catapulta. Como matemático, o grego é famoso pelos seus trabalhos e descobertas na geometria, como o cálculo do número "pi" e a medição de áreas de figuras geométricas.
Só que agora, investigando velhos pergaminhos e manuscritos, o historiador de matemática Reviel Netz, da Universidade de Stanford, na Califórnia, afirma que Arquimedes foi também pioneiro em análise combinatória, área que só ganhou mais incentivo e aplicação com os computadores, no século 20. Os matemáticos desse ramo procuram determinar de quantas maneiras um problema pode ser resolvido. E esses estudos podem ser aplicados na busca do melhor jeito de se realizar uma tarefa. Fazemos algo parecido, por exemplo, quando temos convidados para jantar e queremos saber de quantas formas eles podem ser distribuídos à mesa, e qual a melhor distribuição de pessoas nas cadeiras (quem ao lado de quem).
Os pergaminhos, depois de passar pelas mãos de vários povos da Idade Média, desaparecer várias vezes, ir parar em mosteiros em que monges os utilizaram para escrever orações, sumir de novo e sofrer a ação de mofos, foram reencontrados e analisados nos últimos anos por cientistas, matemáticos e especialistas em grego. Com o auxílio de raios ultravioleta e de programas de computador para separar o que seria original (transcrição do trabalho de Arquimedes) de ruídos (orações escritas, mofos etc.), a equipe liderada por Netz chegou à conclusão que o grego deixou um trabalho inédito sobre um passatempo da Antiguidade: o stomachion.
O trabalho descreve um quebra-cabeça que consiste em um quadrado fracionado em 14 partes. O objetivo do jogo é, depois de embaralhados, juntar esses 14 pedaços para formar novamente o quadrado ou ainda outras figuras conhecidas. O stomachion é parecido com o Tangram, mais difundido hoje, o desafio chinês de 7 peças.
Os especialistas não compreendiam como um gênio como Arquimedes poderia ter perdido seu tempo com um trabalho sobre um brinquedo desses para crianças. Mas analisando os manuscritos e o passatempo, concluíram que o grego havia escrito um tratado para tentar solucionar o seguinte problema: de quantas maneiras as peças podem ser arranjadas para formar o quadrado. Hoje, essa é uma questão para os especialistas em análise combinatória responderem. E eles podem recorrer à ajuda de computadores. Netz propôs o problema para matemáticos atuais da área de combinatória e eles, depois de seis semanas, concluíram que a resposta é 17.152.
Na verdade, não se sabe se Arquimedes inventou o brinquedo nem sequer se chegou à resposta correta do número de arranjos possíveis para a formação do quadrado. Mas na opinião de Netz, o grego teria pelo menos proposto uma solução. E isso há 2.200 anos, enquanto descobria leis da natureza, relações geométricas e inventava máquinas. Ele só não se preocupou em proteger sua própria vida. Conta-se que, absorto em seus estudos, foi morto por um soldado romano durante a invasão de sua cidade, enquanto estudava e escrevia equações matemáticas nas areias da praia de Siracusa, na atual Sicília. Arquimedes teria se recusado a parar de estudar durante o cerco.
Fonte: KAWANO, Carmen. O quebra-cabeça de Arquimedes: pergaminhos revelam trabalho inédito do grego em Análise Combinatória. Revista Galileu, nº 151, Rio de Janeiro. Editora Globo. 2004. Disponível em http://revistagalileu.globo.com/Galileu/0,6993,ECT669583-2680,00.html
Nenhum comentário:
Postar um comentário